Trapping a salt-dependent unfolding intermediate of the marginally stable protein Yfh1

نویسندگان

  • Bartolomé Vilanova
  • Domenico Sanfelice
  • Gabriel Martorell
  • Piero A. Temussi
  • Annalisa Pastore
چکیده

Yfh1, the yeast ortholog of frataxin, is a protein of limited thermodynamic stability which undergoes cold denaturation at temperatures above the water freezing point. We have previously demonstrated that its stability is strongly dependent on ionic strength and that monovalent or divalent cations are able to considerably stabilize the fold. Here, we present a study of the folded state and of the structural determinants that lead to the strong salt dependence. We demonstrate by nuclear magnetic resonance that, at room temperature, Yfh1 exists as an equilibrium mixture of a folded species and a folding intermediate in slow exchange equilibrium. The equilibrium completely shifts in favor of the folded species by the addition of even small concentrations of salt. We demonstrate that Yfh1 is destabilized by a localized energetic frustration arising from an "electrostatic hinge" made of negatively charged residues mapped in the β-sheet. Salt interactions at this site have a "frustration-relieving" effect. We discuss the consequences of our findings for the function of Yfh1 and for our understanding of protein folding stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast Frataxin Is Stabilized by Low Salt Concentrations: Cold Denaturation Disentangles Ionic Strength Effects from Specific Interactions

Frataxins are a family of metal binding proteins associated with the human Friedreich's ataxia disease. Here, we have addressed the effect of non-specifically binding salts on the stability of the yeast ortholog Yfh1. This protein is a sensitive model since its stability is strongly dependent on the environment, in particular on ionic strength. Yfh1 also offers the unique advantage that its col...

متن کامل

An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1.

Depletion of the mitochondrial matrix protein frataxin is the molecular cause of the neurodegenerative disease Friedreich ataxia. The function of frataxin is unclear, although recent studies have suggested a function of frataxin (yeast Yfh1) in iron/sulphur (Fe/S) protein biogenesis. Here, we show that Yfh1 specifically binds to the central Fe/S-cluster (ISC)-assembly complex, which is composed...

متن کامل

The role of hydration in protein stability: comparison of the cold and heat unfolded states of Yfh1.

Protein unfolding occurs at both low and high temperatures, although in most cases, only the high-temperature transition can be experimentally studied. A pressing question is how much the low- and high-temperature denatured states, although thermodynamically equivalent, are structurally and kinetically similar. We have combined experimental and computational approaches to compare the high- and ...

متن کامل

Role of the mitochondrial Hsp70s, Ssc1 and Ssq1, in the maturation of Yfh1.

The mitochondrial matrix of the yeast Saccharomyces cerevisiae contains two molecular chaperones of the Hsp70 class, Ssc1 and Ssq1. We report that Ssc1 and Ssq1 play sequential roles in the import and maturation of the yeast frataxin homologue (Yfh1). In vitro, radiolabeled Yfh1 was not imported into ssc1-3 mutant mitochondria, remaining in a protease-sensitive precursor form. As reported earli...

متن کامل

Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014